Type 1 Diabetes Prone NOD Mice Have Diminished Cxcr1 mRNA Expression in Polymorphonuclear Neutrophils and CD4+ T Lymphocytes

نویسندگان

  • Karine Haurogné
  • Marija Pavlovic
  • Hélène Rogniaux
  • Jean-Marie Bach
  • Blandine Lieubeau
  • Paul Proost
چکیده

In humans, CXCR1 and CXCR2 are two homologous proteins that bind ELR+ chemokines. Both receptors play fundamental roles in neutrophil functions such as migration and reactive oxygen species production. Mouse Cxcr1 and Cxcr2 genes are located in an insulin-dependent diabetes genetic susceptibility locus. The non obese diabetic (NOD) mouse is a spontaneous well-described animal model for insulin-dependent type 1 diabetes. In this disease, insulin deficiency results from the destruction of insulin-producing beta cells by autoreactive T lymphocytes. This slow-progressing disease is dependent on both environmental and genetic factors. Here, we report descriptive data about the Cxcr1 gene in NOD mice. We demonstrate decreased expression of mRNA for Cxcr1 in neutrophils and CD4+ lymphocytes isolated from NOD mice compared to other strains, related to reduced NOD Cxcr1 gene promoter activity. Looking for Cxcr1 protein, we next analyze the membrane proteome of murine neutrophils by mass spectrometry. Although Cxcr2 protein is clearly found in murine neutrophils, we did not find evidence of Cxcr1 peptides using this method. Nevertheless, in view of recently-published experimental data obtained in NOD mice, we argue for possible Cxcr1 involvement in type 1 diabetes pathogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sphingosine-1-phosphate reduces CD4+ T-cell activation in type 1 diabetes through regulation of hypoxia-inducible factor short isoform I.1 and CD69.

OBJECTIVES Non-obese diabetic (NOD) mice develop spontaneous type 1 diabetes. We have shown that sphingosine-1-phosphate (S1P) reduces activation of NOD diabetic endothelium via the S1P1 receptor. In the current study, we tested the hypothesis that S1P could inhibit CD4(+) T-cell activation, further reducing inflammatory events associated with diabetes. RESEARCH DESIGN AND METHODS CD4(+) T-ce...

متن کامل

The type 1 diabetes locus Idd6 controls TLR1 expression.

The Idd6 locus on mouse chromosome 6, which controls the development of type 1 diabetes in the NOD mouse, affects proliferation rates of T cells and the activity of regulatory CD4+CD25+ T cells. Using a transcriptional profiling approach, we show that splenocytes and thymocytes from diabetes-resistant Idd6 NOD.C3H-congenic mouse strains exhibit a constitutive and specific down-regulation of Tol...

متن کامل

Longitudinal Frequencies of Blood Leukocyte Subpopulations Differ between NOD and NOR Mice but Do Not Predict Diabetes in NOD Mice.

Immune phenotyping provides insight into disease pathogenesis and prognostic markers. Trajectories from age of 4 to 36 weeks were modeled for insulin autoantibodies and for leukocyte subpopulations in peripheral blood from female NOD (n = 58) and NOR (n = 22) mice. NOD mice had higher trajectories of insulin autoantibodies, CD4(+) and CD8(+) T lymphocytes, B lymphocytes, IgD(+)IgM(-) B lymphocy...

متن کامل

Dysregulated B7-1 and B7-2 expression on nonobese diabetic mouse B cells is associated with increased T cell costimulation and the development of insulitis.

Little is known about the pathogenic role of B cell dysfunction in T cell-mediated autoimmune disease. We previously reported that B cell hyper-responsiveness, resistance to apoptosis, and accumulation in islets occur during the onset of insulitis, but not in type 1 diabetes (T1D), in NOD mice. In this study we extended these studies to further determine how islet-infiltrated B cells contribute...

متن کامل

Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice

In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were di...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015